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The extended corresponding states (ECS) model has been extensively studied for
representing the thermodynamic surface of pure fluids and mixtures in the
aR(r, T) form, and the most advanced version is currently the one for hydro-
fluorocarbons, but the shape factors J(r, T) and j(r, T) have yet to be
determined as analytical functions for the whole PrT surface of a pure fluid.
For a sample of pure halocarbons, this work aims to solve the fundamental
problem of determining the individual shape functions over the entire PrT
domain through an innovative predictive procedure using a density model
requiring only a single saturated liquid density input. An original algorithm
using artificial neural networks enables the determination of the J(r, T) and
j(r, T) functions from a priori knowledge of their functional forms. The
proposed algorithm focuses on the determination of the residual Helmholtz
energy aR(r, T) for each fluid, subsequently allowing any other thermodynamic
residual function to be calculated through the first and second derivatives of
temperature and density. For each fluid studied, the model has been validated
for residual functions against the same functions coming from highly accurate
dedicated equations of state. The prediction accuracies reach average absolute
deviation values ranging from 0.3 to 7.8%, spanning from vapor and liquid
regions to supercritical conditions, while the corresponding results of the con-
ventional ECS method range from 0.54 to 20%.

KEY WORDS: density; extended corresponding states; feedforward neural net-
works; fundamental equation of state; Helmholtz energy equation; refrigerants;
residual functions.



1. INTRODUCTION

The theoretical background for corresponding states is based on a corre-
spondence hypothesis for the potential energies of the components of a
family of fluids [1, 2]. The fluids belonging to a family meeting this
requirement are considered to share a condition of conformality, which
implies a correspondence for the potential energies. This implies a corre-
spondence of the k(P, r, T) surfaces of each fluid, where P is the pressure,
r is the density, and T is the temperature. Thus, if two fluids, i and j,
belong to a conformal family, then
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from which it follows that an f function,

Pr=f(Tr, Vr) (2)

is the same for all the conformal fluids. In Eqs. (1) and (2), V is the
volume, while the superscript c and the subscript r indicate the critical and
reduced values, respectively.

Then all the derived residual state functions are also conformal. In
particular, it has been demonstrated through further developments of sta-
tistical mechanics theory [3–5] that the fundamental conformality condi-
tion can be reduced to the following relation:

aRj (rj, Tj)=a
R
i (ri, Ti)=a

R
i
1 rj
rcj
rci ,
Tj
Tcj
Tci 2 (3)

where aR is the reduced residual Helmholtz free energy. It has been shown
that this relation is not satisfied even for the noble gases and the fluids
considered here. A correction to this model is consequently needed, the
details of which are shown later. Nonetheless, knowledge of the k(P, r, T)
surfaces is now available, with the highest possible accuracy, from a
dedicated equation of state (DEoS) according to the Schmidt–Wagner
technique [6]. The fluids considered in this study are reported in Table I,
together with the limits of validity of their DEoS. First, two grids in the
independent Tr and Pr variables were set up with the steps indicated in
Table II for artificial neural network (ANN) training and validation,
respectively. The training set numbers approximately 600 points in all,
while the validation set is composed of more than 5000 points. The ranges
of Tr and Pr were then selected for each fluid to observe the single range of
validity for the DEoS (Table I).
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Table I. Dedicated Equations of State and Ranges of Validity for the Halocarbon Fluids
Considered

Fluid Formula Tr min Tr max Pr max Ref. no.

R11 CCl3F 0.34 1.33 6.8 [15]
R12 CCl2F2 0.45 1.56 17.0 [16]
R22 CHClF2 0.31 1.49 12.0 [17]
R32 CH2F2 0.45 1.43 10.3 [18]
R123 CHCl2CF3 0.36 1.15 10.9 [19]
R125 CHF2CF3 0.51 1.47 18.7 [18]
R134a CH2FCF3 0.45 1.34 17.3 [20]
R152a CH3CHF2 0.40 1.13 6.7 [21]

2. EXTENDED CORRESPONDING STATES (ECS) IDENTITIES

According to classical ECS theory, two fluids are considered confor-
mal if they obey the following condition:

aRj (rj, Tj)=a
R
0 (r0, T0) (4)

in which subscripts 0 and j stand for the reference fluid and the fluid of
interest, respectively. A DEoS of the aR0 (r, T0) form is then needed for the
reference fluid.

In a two-parameter corresponding states framework, the condition of
Eq. (4) would be satisfied by ‘‘distorting’’ the independent variables through
the constant scale factors hj and fj:

T0=
Tj
fj
, fj=1

Tcj
Tc0
2 ; r0=rjhj, hj=1

rc0
rcj
2 (5, 6)

Table II. Training and Validation Grid Steps for Tr and Pr

Vapor Liquid Supercritical

Tr step
Training 0.02 0.02 0.02
Validation 0.01 0.01 0.01
Pr step

Training 0.05 0.5 0.5
Validation 0.01 0.1 0.1
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As mentioned, this is not sufficient for the real fluids and a further
correction to the former ‘‘distortion’’ has to be introduced by means of the
shape factors hj(rj, Tj) and fj(rj, Tj) :

fj=1
Tcj
Tc0
2 hj(rj, Tj), hj=1

rc0
rcj
2 fj(rj, Tj) (7, 8)

From the fundamental relation, Eq. (4), the formalism to obtain any
thermodynamic property can now be developed. Restricting our attention
to the more frequently applied thermodynamic functions, the following
identities are valid:
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3. NEURAL NETWORKS

A new model is proposed here, based on the combination of ECS
theory with ANN. Neural networks are versatile function approximators.
They represent a simplified model of the basic architecture of the human
brain and have been developed in the context of artificial intelligence
studies since 1950 [7]. A milestone in this field is the work by Rumelhart
and Mc Lelland [8], which overcame some shortcomings of the earlier
ANN.

One of the most used types of ANN is multilayer feedforward neural
networks (MLFN); see Fig. 1. They are formed by three layer of neurons.
The first layer (input layer) receives the scaled inputs (independent
variables) of the system; the last (output layer) gives the answer, or
answers, of the system to the input stimulation. The hidden layer performs
the elaboration of the final outputs from input signals, through nonlinear
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Fig. 1. Three-layer feedforward neural network architecture.

analytical operations. An ANN’s domain and codomain can be multidi-
mensional; in other words, an ANN can have multiple inputs and multiple
outputs.

In the last decades, MLFNs have been applied to a wide number of
problems. Limiting our attention to the field of thermophysical properties,
they have been used for prediction of the volumetric properties of gases [9]
and of two-phase mixtures [10], for prediction of the vapor pressure of
pure fluids [11] and of the vapor–liquid equilibrium (VLE) of asymmetric
mixtures [12], and for prediction of the liquid viscosity, density, heat of
vaporization, boiling point, and Pitzer’s acentric factor of pure fluids [13].

It has been demonstrated that an ANN is able to approximate any
continuous function in a compact domain [14]. We have chosen to repre-
sent both of the shape factors by means of a single MLFN with two
outputs, i.e., the shape factor functions, Eqs. (7) and (8), since these take
effect simultaneously, distorting the independent variables that enter the
reference fluid DEoS, Eq. (4). The ANN are used here to represent the
shape factors Jj=Jj(Tr, j, dj) and fj=fj(Tr, j, dj) as functions of the inde-
pendent variables (Tr, j, dj).
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Referring to Fig. 1, the two values of the input layer, U1 and U2,
represent the scaled independent thermodynamic variables, related, respec-
tively, to the reduced temperature and to the reduced density. The two
values of the output layer, S1 and S2, represent the scaled shape factors
Jj=Jj(Tr, j, dj) and fj=fj(Tr, j, dj). As in the current practice of ANN,
both input layer values, U1 and U2, and output layer values, S1 and S2, are
compressed here within the same range, 0.05 to 0.95. This means that U1
and U2 do not coincide with the ‘‘true’’ independent variables (Tr, j, dj) but
represent a linear transformation of them. Correspondingly, S1 and S2 are
linear transformations of the two actual outputs Jj and fj.

Each neuron of a layer takes the weighted summation of all the
neurons in the previous layer and then passes this summation through a
transfer function. The transfer function used here is a sigmoid function of
the form

f(x)=a
1

1+e−2bx
(18)

Two parameters have been applied in Eq. (18) to make the function’s
behavior more flexible: a changes the activation span and b determines the
steepness of the sigmoid function. Our choice is to set them as a=1.0 and
b=0.005.

The ANN topology is determined once the number of neurons in the
three layers is fixed: I represents the number of neurons in the input layer
(including a bias term), and K is the number of neurons in the output layer.
In our case, there are two inputs and two outputs, so I=3 and K=2.

The number of neurons in the hidden layer J (bias not included) has to
be found by trial- and- error. In this case the value J=7 was an ideal
compromise between computation speed and accuracy of the resulting
function. Bias nodes are not necessary, but they are introduced to increase
the speed of the training process. They are constant and are here set to

Bias 1=1.0, Bias 2=1.0

The scaling of input and outputs in the range 0.05 to 0.95 is accomplished
by setting

Amin=0.05, Amax=0.95

The following equations represent the neural network analytical for-
mulation:
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HJ+1=Bias 2

Ui=ui(Vi−Vmin, i)+Amin, 1 [ i [ I−1 (24)

UI=Bias 1

In Eqs. (22) and (23) the transfer function defined in Eq. (18) is
recalled. In Eq. (22) the summation is over the J+1 nodes of the hidden
layer, and in Eq. (23) it is over the I nodes of the input layer. In our case
the actual inputs V1 and V2 represent the independent variables of the
system:

V1=Tr, j, V2=dj=(r/rc)j

and similarly, the actual outputs W1 and W2 represent the dependent
variables:

W1=Jj(Tr, j, dj), W2=fj(Tr, j, dj)

The following parameters have to be defined according to the specific
problem to solve. Vmin, i and Vmax, i are the limits of the independent input
variables for the training set; Wmin, k and Wmax, k are the limit values of the
shape factors, which, in this case, were set between 0.8 and 1.2. Due to the
general form of the MLFN selected for application to the present problem
(Fig. 1), the ANN weighting factors are 21 for the first matrix, wij, and 16
for the second matrix, wjk, for a total of 37 weighting factors. The values of
the weighting factor matrixes, wij and wjk, are the ECS–NN EoS param-
eters, i.e., the unknowns of the proposed EoS, which have to be obtained
individually for each fluid of interest through an optimization procedure
[22] which aims at the minimization of an objective function. For the
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optimization, a quasi-Newton method was applied and the software was
written by the authors.

Once the training has been done, for each fluid the shape factors
Jj=Jj(Tr, j, dj) and fj=fj(Tr, j, dj) are obtained in continuous form, and
through Eqs. (4)–(17) the thermodynamic properties of interest can be
computed.

4. MLFN FUNCTION APPROXIMATOR TESTING

First, we verified the ability of this model to approximate the funda-
mental thermodynamic function aRj (Tj, rj) of one of the fluids considered.
We selected R134a as the reference fluid and chose to approximate the
aRj (Tj, rj) DEoS function of R32. We generated aRj (Tj, rj) data from the
R32 DEoS in vapor, liquid, and supercritical zones, as specified in Section 2,
and then trained the network with these data. The objective function
assumed was

fob, 1=
1
n

C
n

i=1

5(aRj )expi −(aRj )calci
(aRj )

exp
i

62 (25)

The aRj (Tj, rj) ECS–NN EoS obtained was tested against the above
validation set, demonstrating that the original data were globally approx-
imated with an average absolute deviation (AAD) of less than 0.3% in the
aR values. The model can thus approximate the fundamental thermody-
namic function aRj (Tj, rj) to a very good degree, even for the most difficult
fluid to represent among those considered here, as explained below.

5. REGRESSION OF A MLFN ON GENERATED DENSITY DATA

Neural shape factors can be determined not only from aRj (Tj, rj) data,
but also from any kind of thermodynamic value, providing the appropriate
ECS identity is given, e.g., Eqs. (4) and (9) to (13). We implemented the
regression of PrT data in the three zones and on the saturation line. We
used a DEoS to generate a set of PrT points in the vapor, liquid, and
supercritical regions and on the saturation line. This training set numbers
approximately 600 points in the three regions and is described in Section 2.
For the bulk-phase regression we considered the following objective function,

fob, 2=
1
n

C
n

i=1

5(ZRj )expi −(ZRj )calci
(ZRj )

exp
i

62 (26)
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where (ZRj )
calc is given by Eq. (9), while at saturation a second objective

function was considered,

fob, 3=
1
n

C
n

i=1
[(ln jj)

sl
i −(ln jj)

sv
i ]
2 (27)

where ln jj is given by Eq. (28) combined with Eq. (13):

ln j=gR− ln Z (28)

The EoS parameter optimization process was developed using an
overall objective function which was selected as a linear combination of the
two former functions, Eqs. (26) and (27):

fob, overall=0.9fob, 2+0.1fob,3 (29)

After training the network, we tested the model’s ability to reproduce
the fundamental thermodynamic function aRj (Tj, rj) and its first partial
derivatives related to ZRj (Tj, rj) and uRj (Tj, rj). The results are listed in
Table III. Looking at the case for R32, which was formerly studied for the
aRj (Tj, rj) function approximation, its weighted average error deviation for
the three regions was 0.4. This figure is only slightly higher than the 0.3 in
the former case, so the ECS–NN EoS can be trained on a derived quantity,
such as density, without any substantial loss of accuracy on the fundamen-
tal surface aRj (Tj, rj). The uR function, which is related to aR through the
temperature first derivative of the shape factors, Eqs. (10), (14), and (16),
can also be represented well.

We then tested the model for the prediction of Zj(Tj, Pj), a
R
j (Tj, Pj),

uRj (Tj, Pj), h
R
j (Tj, Pj), s

R
j (Tj, Pj), g

R
j (Tj, Pj), and ln jj(Tj, Pj). An inversion

is always needed for practical uses, due to the default choice of T and P as
independent variables. The different choice of independent variables in this
second case demands an iterative procedure to find a solution for rj(Tj, Pj).
The results of the validation study are listed in Table IV. The accuracy of
the volumetric model can be evaluated through the Zj(Tj, Pj) function; the
AAD achieved is comparable with the corresponding value of a Schmidt–
Wagner multiparameter DEoS. The residual functions are also well repre-
sented, with sR deviating in the vapor phase at a maximum of 4.15% with
respect to a DEoS, whose error deviation for this function (and for some
others) is unknown. It is worth emphasizing that the upper limit of the
liquid phase was globally less than 1%.

Finally, as proof of its consistency, saturation pressures and saturated
liquid and vapor densities were calculated from the model through the VLE
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Table III. Residual Functions’ Prediction Accuracy Without Inversion for ECS–NN
Trained on Data Generated from DEoS

AAD (%)

Property Fluid Vapor Liquid Supercritical

aR R11 0.967 0.157 1.593
R22 0.445 0.054 0.456
R32 1.071 0.088 0.383
R123 0.520 0.236 0.197
R125 0.603 0.237 2.032
R152a 0.935 0.142 0.525

Avg. 0.757 0.151 0.982

ZR R11 1.395 0.429 2.069
R22 0.817 0.258 1.444
R32 0.980 0.223 1.431
R123 0.849 0.287 0.986
R125 0.958 0.371 1.772
R152a 0.983 0.321 0.950

Avg. 1.000 0.315 1.555

uR R11 3.474 0.619 2.867
R22 2.220 0.238 0.662
R32 2.309 0.328 1.577
R123 1.726 0.482 0.589
R125 3.488 0.465 4.709
R152a 2.179 0.259 0.2943

Avg. 2.571 0.398 2.103

Overall 1.443 0.288 1.547

condition, jsl=jsv, on the saturation line. The results are presented in
Table V. These three values have to be considered as the residual deviation
errors for the final EoS, because all three were used in the minimization
objective function.

6. REGRESSION OF A MLFN ON DATA FROM A PREDICTIVE
VOLUMETRIC MODEL

In this case, the ECS–NN EoS is trained on density data generated
with a volumetric model developed previously by the current authors
[23–25]. The volumetric model enables the predictive generation of PrT
data, on which our ECS model was subsequently trained. Since the volu-
metric model needs no more than one experimental saturated liquid density
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Table V. Prediction Accuracy (%) at Saturation for ECS–NN Trained on Data from DEoS

Fluid Sat. vapor pressure Sat. liquid density Sat. vapor density

R11 0.650 0.189 1.162
R22 0.239 0.098 0.700
R32 0.432 1.155 1.392
R123 0.865 0.120 1.415
R125 0.993 0.147 1.155
R152a 0.651 0.536 1.203

Avg. 0.638 0.374 1.171

value, the great advantage of this approach is predictivity. For developing
this new model a method quite similar to the one described in the former
case for ‘‘exact’’ density data was assumed. For the predictive volumetric
model [23–25] the fluids R12 and R134a were selected as references.

For sake of brevity it is preferable not to report here all the weighting
factors sets of the ECS–NN EoSs developed for each of the fluids studied,
but, aiming at giving a single example, the weighting factors for R152a are
listed in Table VI. The final values of the objective functions fob, 2, fob, 3,
and fob, overall, Eqs. (26), (27), and (29), of the ECS–NN EoS are also
reported in Table VI with respect to the residual compressibility factor ZR

and the vapor pressure P sat coming from the predictive density model [25]
and an ancillary equation [21], respectively. The corresponding values of
the AADs, all over the regular grids for training, are 1.26% forZR and 1.35%

Fig. 2. Percentage error deviation on aRj (yj, dj) for R152a.
The ECS–NN model is trained on data generated from
DEoS.
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Fig. 3. Shape factor Jj=Jj(yj, dj) for R152a. The
ECS–NN model is trained on data generated from DEoS.

for P sat, respectively. The resulting AAD values are considered to be quite
satisfactory.

We compared the performance of our ECS–NN model, trained on
data generated from the density model, with that of the Huber–Ely ECS
model [3]. Both models aim for predictivity, though the latter also requires
a saturated liquid volume correlation.

The validation results for our model are listed in Table VII. Because
the density data used to train the model are less accurate than in the pre-
vious case, a certain drop in precision with respect to the former case is
inevitable. This is evident for the supercritical region, in general, and par-
ticularly for R32, which is always the most difficult fluid to reproduce. The

Fig. 4. Shape factor fj=fj(yj, dj) for R152a. The
ECS–NN model is trained on data generated from DEoS.
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Table VI. Weighting Factors wij and wjk and Parameters for the Shape Factors
Jj=Jj(Tr, j, dj) and fj=fj(Tr, j, dj) of R152a

i j wij j k wjk

1 1 0.524453 × 102 1 1 − 0.113905 × 103

2 1 0.190040 × 103 2 1 − 0.427424 × 102

3 1 0.158936 × 102 3 1 0.158424 × 102

1 2 0.300692 × 102 4 1 − 0.597281 × 102

2 2 0.121011 × 103 5 1 − 0.174752 × 103

3 2 − 0.383930 × 102 6 1 0.620108 × 103

1 3 0.753323 × 102 7 1 0.154052 × 103

2 3 0.248739 × 103 8 1 0.124274 × 103

3 3 − 0.300739 × 101 1 2 − 0.699742 × 101

1 4 − 0.194355 × 103 2 2 0.379964 × 102

2 4 − 0.232349 × 103 3 2 0.104075 × 103

3 4 − 0.371052 × 102 4 2 − 0.294540 × 103

1 5 − 0.270544 × 103 5 2 0.680229 × 102

2 5 − 0.120515 × 103 6 2 − 0.297338 × 103

3 5 − 0.565987 × 102 7 2 − 0.211452 × 103

1 6 − 0.161977 × 103 8 2 − 0.116517 × 103

2 6 − 0.947853 × 103

3 6 − 0.116044 × 103

1 7 − 0.186182 × 102

2 7 − 0.504267 × 103

3 7 − 0.106972 × 103

Independent variables’ extrema

Vmin, 1 0.51
Vmax, 1 1.13
Vmin, 2 0.222280 × 10−3

Vmax, 2 0.309589 × 101

Dependent variables’ extrema

Wmin, 1 0.8
Wmax, 1 1.2
Wmin, 2 0.8
Wmax, 2 1.2

Residual values of objective functions

fob, 2 0.153523 × 10−2

fob, 3 0.861922 × 10−4

fob, overall 0.139033 × 10−2
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Table VIII. Prediction Accuracy (%) at Saturation for ECS–NN Trained on Data from the
Density Model

Fluid Sat. vapor pressure Sat. liquid density Sat. vapor density

R11 1.086 1.876 1.716
R22 0.341 0.212 0.674
R32 2.984 0.312 4.728
R123 0.869 0.128 1.381
R125 1.34 0.144 1.890
R152a 1.351 0.733 2.109

Avg. 1.325 0.567 2.083

volumetric precision is very good in the vapor and liquid phases, with an
average AAD less than 0.3 and 0.6%, respectively, but in the supercritical
region it rises to over 2.5%. Generally speaking, the results obtained for the
various residual potential functions vary from fluid to fluid and also from
one region to another. The functions’ AADs in the liquid zone are around
1%, while the AAD for the supercritical and vapor regions falls between
1 and 4%, with only one case exceeding these values, i.e., sR in the vapor
phase, where an AAD of 7.8% is reached. The validation results of the
ECS–NN model on the saturation line are listed in Table VIII; also, in this
case the prediction accuracy is worse, with error deviations larger by a
factor of about two. The validation of the Huber–Ely [3] ECS model is
presented in Table IX. The AAD on PrT data is about 0.5% for the liquid
and less than 1.5% for the vapor and supercritical regions. The residual
potential functions AADs in the liquid zone are usually less than 1.5%,
while the AADs in the vapor phase are significantly higher, generally
between 8 and 15%, with the highest value, for sR, reaching nearly 20% as
the mean value. In the supercritical region the AAD values are usually
limited to 5% at the maximum. Results of the validation tests along the
saturation line are listed in Table X; the results for density are, in particu-
lar, worse.

7. CONCLUSIONS

A new method for determining shape factors in the ECS modeling
framework is proposed. The approach requires an a priori analytical form
for the shape factor functions, and, for this, the ANN, as very versatile
function approximators, have been applied. The shape factors are repre-
sented through ANN as functions of the two independent variables, tem-
perature and density. The ECS–NN EoS parameters are determined trough
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Table X. Prediction Accuracy (%) at Saturation for the Conventional ECS Model [3]

Fluid Sat. vapor pressure Sat. liquid density Sat. vapor density

R11 1.079 3.355 5.418
R22 0.647 2.384 4.064
R32 0.661 4.438 7.445
R123 0.701 2.835 4.739
R125 1.705 2.407 3.151
R152a 3.032 3.643 7.54

Avg. 1.304 3.177 5.392

a minimization procedure. A number of halogenated alkanes for which
DEoS are presently available were considered in the study. The capability
of the ECS–NN EoS to represent PrT data in the vapor, liquid, and
supercritical regions was verified, with an AAD between 0.026 and 0.5%,
which is comparable to the analogous value of a multiparameter DEoS.
The uncertainty of the model, trained on PrT data, in representing residual
potential functions was also tested, obtaining AAD values generally less
than 0.8% for the liquid and less than 4% for the vapor and supercritical
regions. The ECS–NN EoS was subsequently trained on PrT data gener-
ated through an original predictive volumetric model requiring a single
saturated liquid density value as input for each fluid. This makes the whole
method predictive, although with an expected slight decrease in accuracy.
The AAD values for PrT data are much less than 1% in the liquid and
vapor regions, while in the supercritical region they reach 2.5%. The AAD
for residual potential functions are often less than 1% for the liquid and
generally less than 4% for the vapor and supercritical regions. The com-
parison of the present predictive ECS–NN model with the Huber–Ely
model [3] shows that in the liquid and supercritical regions the results are
comparable, although not uniform for the second model, while the second
model presents a marked deterioration in the representation of the vapor
region residual potential functions.

The proposed model allows us to obtain an ECS model predictively,
with locally defined individual shape factors, which shows good and con-
sistent performance.
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